129=.006A^2-.02A+120

Simple and best practice solution for 129=.006A^2-.02A+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 129=.006A^2-.02A+120 equation:


Simplifying
129 = 0.006A2 + -0.02A + 120

Reorder the terms:
129 = 120 + -0.02A + 0.006A2

Solving
129 = 120 + -0.02A + 0.006A2

Solving for variable 'A'.

Combine like terms: 129 + -120 = 9
9 + 0.02A + -0.006A2 = 120 + -0.02A + 0.006A2 + -120 + 0.02A + -0.006A2

Reorder the terms:
9 + 0.02A + -0.006A2 = 120 + -120 + -0.02A + 0.02A + 0.006A2 + -0.006A2

Combine like terms: 120 + -120 = 0
9 + 0.02A + -0.006A2 = 0 + -0.02A + 0.02A + 0.006A2 + -0.006A2
9 + 0.02A + -0.006A2 = -0.02A + 0.02A + 0.006A2 + -0.006A2

Combine like terms: -0.02A + 0.02A = 0.00
9 + 0.02A + -0.006A2 = 0.00 + 0.006A2 + -0.006A2
9 + 0.02A + -0.006A2 = 0.006A2 + -0.006A2

Combine like terms: 0.006A2 + -0.006A2 = 0.000
9 + 0.02A + -0.006A2 = 0.000

Begin completing the square.  Divide all terms by
-0.006 the coefficient of the squared term: 

Divide each side by '-0.006'.
-1500 + -3.333333333A + A2 = 0

Move the constant term to the right:

Add '1500' to each side of the equation.
-1500 + -3.333333333A + 1500 + A2 = 0 + 1500

Reorder the terms:
-1500 + 1500 + -3.333333333A + A2 = 0 + 1500

Combine like terms: -1500 + 1500 = 0
0 + -3.333333333A + A2 = 0 + 1500
-3.333333333A + A2 = 0 + 1500

Combine like terms: 0 + 1500 = 1500
-3.333333333A + A2 = 1500

The A term is -3.333333333A.  Take half its coefficient (-1.666666667).
Square it (2.777777779) and add it to both sides.

Add '2.777777779' to each side of the equation.
-3.333333333A + 2.777777779 + A2 = 1500 + 2.777777779

Reorder the terms:
2.777777779 + -3.333333333A + A2 = 1500 + 2.777777779

Combine like terms: 1500 + 2.777777779 = 1502.777777779
2.777777779 + -3.333333333A + A2 = 1502.777777779

Factor a perfect square on the left side:
(A + -1.666666667)(A + -1.666666667) = 1502.777777779

Calculate the square root of the right side: 38.765677832

Break this problem into two subproblems by setting 
(A + -1.666666667) equal to 38.765677832 and -38.765677832.

Subproblem 1

A + -1.666666667 = 38.765677832 Simplifying A + -1.666666667 = 38.765677832 Reorder the terms: -1.666666667 + A = 38.765677832 Solving -1.666666667 + A = 38.765677832 Solving for variable 'A'. Move all terms containing A to the left, all other terms to the right. Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667 + A = 38.765677832 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + A = 38.765677832 + 1.666666667 A = 38.765677832 + 1.666666667 Combine like terms: 38.765677832 + 1.666666667 = 40.432344499 A = 40.432344499 Simplifying A = 40.432344499

Subproblem 2

A + -1.666666667 = -38.765677832 Simplifying A + -1.666666667 = -38.765677832 Reorder the terms: -1.666666667 + A = -38.765677832 Solving -1.666666667 + A = -38.765677832 Solving for variable 'A'. Move all terms containing A to the left, all other terms to the right. Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667 + A = -38.765677832 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + A = -38.765677832 + 1.666666667 A = -38.765677832 + 1.666666667 Combine like terms: -38.765677832 + 1.666666667 = -37.099011165 A = -37.099011165 Simplifying A = -37.099011165

Solution

The solution to the problem is based on the solutions from the subproblems. A = {40.432344499, -37.099011165}

See similar equations:

| 21-6(n)=117 | | 6v+45=9(v+2) | | -100x^2+50x+100=0 | | 3/2x=-15 | | x^2-0.9x+0.2=3 | | X^3+8x^2=48x | | x^2-0.9x+0.2=0 | | 6+5x-4x=13 | | 5x-12=6x-10 | | 3(8.666666667+-1.333333333p)=26 | | 17x+32=7-40x | | 7-4(x+3)=7 | | 8-(4z-7)=6-5z | | X-10=5/12 | | (x+y)(5x^2-2xy+4y^2)= | | 4a+3b=26 | | 0.2x^2-0.9x+1=0 | | -13-x=-7 | | x(x+4)=2x+15 | | v=3/43.14(4)3 | | 7a+5b=45 | | (2/x)-(4/5)=(3/x) | | y=cos(cos(cosx)) | | 5b+7p=45 | | 17-4.2= | | 42x+36= | | x^2+8-65=0 | | 7p+5b=45 | | 5x^2+125=50x | | x^2015=0 | | (x)/(2.00-x)=1.25 | | -6(11-10a)=11(4+5a) |

Equations solver categories